Menu

RNA Protects “Naked” Genomes from Retrotransposons

Transfer RNA fragments prevent jumping genes from hopping around in the mouse embryo, when histone methylation can’t do the job.

Jun 30, 2017
Shawna Williams

WIKIMEDIA, MARIUSWALTERTo protect their genes from being wrecked by retrotransposons, or jumping genes, mouse cells usually employ histone methylation to stop these rogue genetic elements from being transcribed. But how does the genome stay protected in the pre-implantation embryo, when methyl groups are temporarily stripped from cells’ DNA. A new study, published yesterday (June 29) in Cell, finds tRNA fragments are key.

Based on previous studies in fruit flies, Andrea Schorn and Rob Martienssen of Cold Spring Harbor Laboratory thought the answer to what protects vulnerable mouse embryo genomes might lie in small RNAs. To find them, they made some tweaks to the usual techniques. As they explain in their paper, “many small RNA sequencing studies omit RNA fragments shorter than 19 [nucleotides] or discard sequencing reads that map to multiple loci in the genome, thus often discarding reads matching young, potentially active transposons…” 

By including smaller fragments in their RNA library and analysis, the authors turned up “very abundant” 18- and 22-nucleotide fragments of tRNAs. Results of further experiments suggested the 18-nucleotide fragments occupy the retrotransposons’ primer binding sites, blocking full tRNA molecules from binding there and initiating replication, while the 22-nucleotide fragments post-transcriptionally silence a protein needed for retrotransposition.

See “Tethering transposons”      

“It’s plausible that this is a very ancient mechanism that cells have found to not only inhibit retrotransposons but help in protection against viruses as well,” Martienssen says in a statement.

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Marketplace

Sponsored Product Updates

StemExpress LeukopakâNow Available in Frozen Format

StemExpress LeukopakâNow Available in Frozen Format

StemExpress, a Folsom, California based leading supplier of human biospecimens, announces the release of frozen Peripheral Blood Leukopaks. Leukopaks provide an enriched source of peripheral blood mononuclear cells (PBMCs) with low granulocyte and red blood cells that can be used in a variety of downstream cell-based applications.

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

Vector Laboratories, a leader in the development and manufacture of labeling and detection reagents for biomedical research, introduces VECTASHIELD® Vibrance™ – antifade mounting media that delivers significant improvements to the immunofluorescence workflow.

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Download this white paper from Bertin Technologies to learn how to extract and analyze lipid samples from various models!

Bio-Rad Launches CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin for Process Protein Purification

Bio-Rad Launches CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin for Process Protein Purification

Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced the launch of two new chromatography media for process protein purification: CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin.