Menu

Studies Show How Cells Differentiate at Life’s Beginning

A trio of papers provide new insight into embryo development.

Apr 27, 2018
Shawna Williams

A zebrafish embryoSTILL FROM A VIDEO BY FENGZHU XIONG AND SEAN MEGASON/HMSBy profiling gene expression in thousands of embryonic zebrafish and frog cells, researchers at Harvard University have refined the picture of how early development occurs. In a trio of papers published yesterday (April 26) in Science, two separate research groups also compare results to find common and divergent features of the embryos of zebrafish and frogs.

“With single-cell sequencing, we can, in a day’s work, recapitulate decades of painstaking research on the decisions cells make at the earliest stages of life,” says Allon Klein, an author of two of the papers, in a statement.

In all of the studies, the researchers separated individual cells in embryos and analyzed which messenger RNA molecules were present in them to build a profile of which genes were in use. One of the studies then computationally pieced together different stages of development over the first day of growth for a zebrafish embryo. Another examined how embryonic cells differentiate in frogs, and how the process compared with that of zebrafish. In the third paper, also performed on zebrafish, researchers found that, surprisingly, cells that had started down a path to becoming one type of differentiated cell could switch and pursue a different fate.

“I think the future of development will be to routinely single-cell sequence embryos,” Detlev Arendt, an evolutionary developmental biologist at the European Molecular Biology Laboratory in Heidelberg, Germany, who was not involved in the studies, tells Science.

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb

Marketplace

Sponsored Product Updates

FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX has announced that their digital PCR assets, including the CONSTELLATION® series of instruments, is being acquired by QIAGEN N.V. (NYSE: QGEN, Frankfurt Stock Exchange: QIA) for up to $260 million ($125 million upfront payment and $135 million of milestones).  QIAGEN has announced plans for a global launch in 2020 of a new series of digital PCR platforms that utilize the advanced dPCR technology developed by FORMULATRIX combined with QIAGEN’s expertise in assay development and automation.
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
With this application note from Taconic, learn about the power that the CRISPR/Cas system has to revolutionize the field of custom mouse model generation!
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
This webinar, from Crown Bioscience, presents a unique continuum of translational dysmetabolic platforms that more closely mimic human disease. Learn about using next-generation rodent and spontaneously diabetic non-human primate models to accurately model human-relevant disease progression and complications related to obesity and diabetes here!
BiochemAR: an augmented reality app for easy visualization of virtual 3D molecular models
BiochemAR: an augmented reality app for easy visualization of virtual 3D molecular models
Have you played Pokemon Go? Then you've used Augmented Reality (AR) technology! AR technology holds substantial promise and potential for providing a low-cost, easy to use digital platform for the manipulation of virtual 3D objects, including 3D models of biological macromolecules.