Menu

Study: DNA Folding Patterns Revealed

Recent data suggest that instead of folding into rigid higher-order structures, chromatin is malleable and diverse.

Jul 28, 2017
Aggie Mika

An electron micrograph depicting chromatin chains inside a nucleusCLODAGH C. O'SHEA, SALK INSTITUTE, LA JOLLA, CALIF. When it’s completely unraveled, DNA is known to extend approximately six feet in length, yet is somehow able to cram itself into a cell’s nucleus. In a study published today (July 27) in Science, researchers created a novel visualization method that revealed a 3-D glimpse of chromatin as it sits jam-packed within the nuclei of human cells.

The researchers found that, contrary to how it’s depicted in most textbooks, chromatin does not fold in on itself in an organized manner to create distinct structures. Instead, it forms a pliable, inconsistent chain characterized by a wide variety of folding patterns. 

“We show that chromatin does not need to form discrete higher-order structures to fit in the nucleus,” explains O’Shea in a news release by the Salk.

DNA winds itself around histone proteins. Eight histones, together with their associated DNA, form nucleosomes, which are then folded up and condensed several more times into a chromatid. But according to the report, scientists haven’t actually seen how DNA folds into chromatids within whole cells.

A team of scientists at the Salk Institute applied a new dye that covers the surface of DNA, and together with University of California, San Diego, researchers, used electron-microscope tomography to visualize its 3-D structure, dubbing their method ChromEMT.

“The system enables individual DNA particles, chains and chromosomes to be visualized in 3D in a live, single cell. Thus, we are able to see the fine structure and interactions of DNA and chromatin in the nucleus of intact, live cells,” senior author Clodagh O'Shea of the Salk Institute says in a news release by the National Institutes of Health (NIH), which funded the study.

This new picture of chromatin structure demonstrates that in order to contain itself within a given cell’s nucleus, DNA folds a bit differently than what researchers originally envisioned. The authors conclude that chromatin is both “a flexible and disordered 5- to 24-nm-diameter granular chain that is packed together at different concentration densities.” It bends and folds together in different places, achieving a diversity of structures. 

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Marketplace

Sponsored Product Updates

Horizon Discovery introduces Myeloid DNA Reference Standard to support genetic testing of leukemia

Horizon Discovery introduces Myeloid DNA Reference Standard to support genetic testing of leukemia

Horizon Discovery Group plc, a global leader in gene editing and gene modulation technologies, today announced the launch of its Myeloid DNA Reference Standard. The first-to-market large cell-line derived myeloid cancer reference standard designed enables faster, more reliable and more cost-effective assay validation, to support the market in bringing routine testing into practice.

StemExpress LeukopakâNow Available in Frozen Format

StemExpress LeukopakâNow Available in Frozen Format

StemExpress, a Folsom, California based leading supplier of human biospecimens, announces the release of frozen Peripheral Blood Leukopaks. Leukopaks provide an enriched source of peripheral blood mononuclear cells (PBMCs) with low granulocyte and red blood cells that can be used in a variety of downstream cell-based applications.

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

Vector Laboratories, a leader in the development and manufacture of labeling and detection reagents for biomedical research, introduces VECTASHIELD® Vibrance™ – antifade mounting media that delivers significant improvements to the immunofluorescence workflow.

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Download this white paper from Bertin Technologies to learn how to extract and analyze lipid samples from various models!