Menu

Study: Microglia Tied to Weight Gain in Mice

Just by activating these immune cells in the brain, scientists could make mice eat more and burn fewer calories.

Jul 5, 2017
Aggie Mika

A slice of the mediobasal hypothalamus, taken from a mouse fed a high-fat diet, depicts accumulating microglia (green) along with Agouti-related protein neurons (AgRP; red). AgRP neurons are important regulators of food consumption and body composition.

THE SUNEIL KOLIWAD LAB

   Microglia—the brain’s own macrophages—can prompt excess eating and subsequent weight gain in mice fed high-fat diets, according to a study published today (July 5) in Cell Metabolism. The researchers demonstrate that an appetite-promoting inflammatory cascade driven by these immune cells occurs within the mediobasal region of the hypothalamus, a structure that, according to a news release, “contains key groups of neurons that regulate food intake and energy expenditure.”

Prior studies have demonstrated that when mice are fed a diet high in saturated fat, they consume more while expending fewer calories, leading them to gain weight, the news release states. Additionally, previous work in both obese mice and humans has also shown that microglia within the hypothalamus increase following high-fat feeding, prompting inflammation, the authors write in their report.

In the current study, the researchers examined whether microglial activity in the mediobasal hypothalamus had anything to do with the increased food consumption and weight gain observed in mice consuming diets high in fat.

First, they used a drug to wipe out microglia in this region brain and found that microglia-lacking, high-fat consuming mice gained less weight than their non-drugged, high-fat counterparts. They then genetically manipulated mice so that their microglia weren’t capable of mounting an inflammatory response, and these mice also ate less and gained less weight than normal mice on the high-fat diets.

Ongoing clinical trials testing the effects of a similar drug called PLX3977 in patients with certain cancers and arthritis may be able to shed some light on whether pharmacologically targeting microglia can impact weight, notes senior author Suneil Koliwad of the University of California, San Francisco, in the news release.

To find out if microglial activity alone could trigger overeating and weight gain in mice on a normal low-fat diet, the scientists induced microglial inflammation in the rodents’ brains. Indeed, despite eating diets lower in fat, hypothalamic inflammation drove these mice to burn fewer calories, eat more, and gain more weight than control mice on normal diets.

“From these experiments we can confidently say that the inflammatory activation of microglia is not only necessary for high-fat diets to induce obesity, but also sufficient on its own to drive the hypothalamus to alter its regulation of energy balance, leading to excess weight gain,” says co-senior author Joshua Thaler of the University of Washington, in the news release.

When high-fat foods were scarce, microglia could have evolved to amplify appetite to increase consumption of energy-rich meals, adds Koliwad. But this adaptation may no longer be advantageous. “In our modern world, when people constantly overeat rich, high-fat foods, chronic microglial activation could produce a more permanent stimulation of neural circuits that further increase high-fat food intake, leading to the development of a vicious cycle.”

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb

Marketplace

Sponsored Product Updates

FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX has announced that their digital PCR assets, including the CONSTELLATION® series of instruments, is being acquired by QIAGEN N.V. (NYSE: QGEN, Frankfurt Stock Exchange: QIA) for up to $260 million ($125 million upfront payment and $135 million of milestones).  QIAGEN has announced plans for a global launch in 2020 of a new series of digital PCR platforms that utilize the advanced dPCR technology developed by FORMULATRIX combined with QIAGEN’s expertise in assay development and automation.
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
With this application note from Taconic, learn about the power that the CRISPR/Cas system has to revolutionize the field of custom mouse model generation!
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
This webinar, from Crown Bioscience, presents a unique continuum of translational dysmetabolic platforms that more closely mimic human disease. Learn about using next-generation rodent and spontaneously diabetic non-human primate models to accurately model human-relevant disease progression and complications related to obesity and diabetes here!
BiochemAR: an augmented reality app for easy visualization of virtual 3D molecular models
BiochemAR: an augmented reality app for easy visualization of virtual 3D molecular models
Have you played Pokemon Go? Then you've used Augmented Reality (AR) technology! AR technology holds substantial promise and potential for providing a low-cost, easy to use digital platform for the manipulation of virtual 3D objects, including 3D models of biological macromolecules.