Menu

Opinion: Acquiring Extra Senses

Animals’ diverse sensory abilities will guide a technology-based revolution that gives humans perception beyond our natural senses.

Sep 1, 2016
Bernd Fritzsch

© ISTOCK.COM

Vision, hearing, taste, smell, and touch: these are the five major senses humans are accustomed to. Our understanding of the world has been shaped by the information we are accessing with these senses. But while these are the only senses humans perceive consciously, they are not the only senses that we have. For example, the semicircular canals of the inner ear contribute to our sense of balance. Similarly, we know when our legs are stretched out or flexed because receptors inform about stretch and load on our muscle fibers and tendons. (See “Proprioception: The Sense Within.”) We also receive sensory feedback on the filling of our bladders and stomachs. Such internal senses are essential for daily life, and we are rarely aware of them as we are of visual or auditory stimuli.

Outside of humans, species across the animal kingdom harbor different—sometimes more powerful—sensory capabilities. Some animals can see infrared or ultraviolet, for example, and many species hear pitches well out of the range of human hearing. Some snakes are sensitive to heat, “seeing” the temperature of their environment. Many fish and salamanders can sense small electric discharges generated when muscle fibers contract, and some insects, birds, and mammals appear to use the Earth’s magnetic field to orient and navigate. (See “Sensory Biology Around the Animal Kingdom.”)

As we continue to learn about the diverse sensory capabilities that exist in nature and to develop technologies that enable detection of a broad range of sensory input, the logical next step is to put new senses into old (human) brains. Devices that replace lost senses already exist. Cochlear or vestibular implants convert auditory and balance input into nervous impulses sent to the user’s brain, and analogous optical devices that can give sight back to the blind are close to coming online. (See “The Bionic Eye,” The Scientist, October 2014.)

Devices that provide humans with senses outside of the traditional five are on the horizon. The brain has proven extraordinarily plastic. It can, for example, interpret sound stimuli even if the signal reaches areas of the brain dedicated for image processing. Initial experimental work was done in animals, rewiring the brain’s pathways for processing sound, vision, etc. However, it now appears that such sensory cross-talk can happen naturally. For example, some blind people describe that they “see” around them, using sound (produced by their stick or tongue) in a manner similar to that of an echolocating animal. Thus, we have reason to believe that we can integrate detection technology with human biology in a way that allows us to at least subconsciously perceive and process stimuli outside of humans’ natural capabilities.

As we continue to learn about the diverse sensory capabilities that exist in nature and to develop technologies that enable detection of a broad range of sensory input, the logical next step is to put new senses into old (human) brains.

Imagine this: infrared information is directly fed into your visual cortex. You can now “see” warm-blooded animals during the night, much like a snake hunting a mouse. You might even be able to tell who around you has a fever by simply glimpsing their infrared temperature. Imagine seeing ultraviolet light as added color, or using polarized light to help you orient yourself in an unknown area, the way an ant does. Imagine having a dog’s sense of smell, or the sense of ultrasound hearing that would enable you to listen to bats. Imagine being equipped with sensors to detect magnetic or electric fields.

Such technology is not far off. The bionic eyes being developed could easily have expanded wavelength ranges, covering infrared and ultraviolet. Cochlear implants could be tuned to expand the range to ultra- and infrasound to hear bat and elephant communications. Emerging “smart skin” technologies offer touch and temperature senses—to furnish sensation to prosthetic limbs, for example—and we could soon add magnetoreception to our array of sensory modalities. (See “Smart Skin Enables Magnetoreception.”)

As these technologies continue to advance, researchers will expand our world beyond the limits of the traditional five senses. In the more distant future, we may even perceive radio signals that permanently connect us with larger networks, thus allowing us to tap into the multitude of sensors beyond those in and on our bodies. Even sensors too large to be incorporated into the human body—think of the vast laser arrays needed to detect disturbances in gravitational waves—could be fed into our consciousness. Then we’d truly have transgressed the boundaries imposed on our worldview by the limited sensory capacity of our species. 

Bernd Fritzsch is a member of the German National Academy of Sciences and director of the Aging Mind and Brain Initiative at the University of Iowa in Iowa City. His research aims to retain nerve function for use with cochlear and vestibular implants.

February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Marketplace

Sponsored Product Updates

Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced that its QXDx AutoDG ddPCR System, which uses Bio-Rad’s Droplet Digital PCR technology, and the QXDx BCR-ABL %IS Kit are the industry’s first digital PCR products to receive U.S. Food and Drug Administration (FDA) clearance. Used together, Bio-Rad’s system and kit can precisely and reproducibly monitor molecular response to treatment in patients with chronic myeloid leukemia (CML).
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) today showcases new automation features of its ZE5 Cell Analyzer during the Society for Laboratory Automation and Screening 2019 International Conference and Exhibition (SLAS) in Washington, D.C., February 2–6. These capabilities enable the ZE5 to be used for high-throughput flow cytometry in biomarker discovery and phenotypic screening.
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Researchers to benefit from an innovative software-connected pipetting system, bringing improved reproducibility and traceability of experiments to life-science laboratories.
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Incorporated (NYSE: GLW) will showcase advanced 3D cell culture technologies and workflow solutions for spheroids, organoids, tissue models, and applications including ADME/toxicology at the Society for Laboratory Automation and Screening (SLAS) conference, Feb. 2-6 in Washington, D.C.