Why Some COVID-19 Cases Are Worse than Others

Emerging data as well as knowledge from the SARS and MERS coronavirus outbreaks yield some clues as to why SARS-CoV-2 affects some people worse than others.

katya katarina zimmer
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

ABOVE: Colored visualization of electron microscopy photo of the coronavirus SARS-CoV-2
© ISTOCK.COM, NARVIKK

Like many other respiratory conditions, COVID-19—the disease caused by SARS-CoV-2—can vary widely among patients. The vast majority of confirmed cases are considered mild, involving mostly cold-like symptoms to mild pneumonia, according to the latest and largest set of data on the new coronavirus outbreak released February 17 by the Chinese Center for Disease Control and Prevention.

Fourteen percent of confirmed cases have been “severe,” involving serious pneumonia and shortness of breath. Another 5 percent of patients confirmed to have the disease developed respiratory failure, septic shock, and/or multi-organ failure—what the agency calls “critical cases” potentially resulting in death. Roughly 2.3 percent of confirmed cases did result in death.

Scientists are working to understand why some people suffer more from the virus than others. It is also unclear why the new coronavirus—like its cousins SARS and MERS—appears to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • katya katarina zimmer

    Katarina Zimmer

    After a year teaching an algorithm to differentiate between the echolocation calls of different bat species, Katarina decided she was simply too greedy to focus on one field. Following an internship with The Scientist in 2017, she has been happily freelancing for a number of publications, covering everything from climate change to oncology.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide