Scientists create 3D cell culture models such as organoids, spheroids, and organs on a chip for molecular biology research and high throughput drug discovery.1 Unlike costly animal models or 2D cell culture systems that inadequately represent multifaceted tissues, 3D cell culture models are more financially accessible for in-depth biological studies and enable scientists to recapitulate complex physiological functions. However, the culturing process behind models such as organoids is highly involved, often requiring multistep manual methods that are time consuming, laborious, and subject to reproducibility challenges.1

     A 3D rendered image of the Automated Cell Culture System in a laboratory.
The Automated Cell Culture System automates 3D biology, improves workflows, and makes assays more reliable and reproducible.
Molecular Devices

Conventional methods for 3D cell culture rely on human intervention across all steps of growth, including seeding stem cells, collecting aggregates, feeding differentiating cells long term, and imaging and tracking cultures as they grow. Automated cell culture systems that incorporate liquid handling, incubation, monitoring, and imaging optimize these protocols.1

Recent tools that connect automation and artificial intelligence (AI)-mediated feedback systems further optimize this process by modulating culture conditions and screening data with minimal human input.2 For instance, machine-learning algorithms can efficiently monitor and instruct automated technologies for efficient organoid construction, image analysis, and application readouts. AI reduces hands-on time in the laboratory and limits opportunities for human error and variability.1,2

New AI-enabled automation technologies, such as the™ Automated Cell Culture System from Molecular Devices, improve high-throughput cell culture reliability and reproducibility, which is particularly important for 3D culture workflows and drug development.3 This allows researchers to scale up their cell culture models, facilitating faster and more relevant discoveries.

Read more about AI-driven automated cell culture.


  1. Louey A, et al. SLAS Discov. 2021;26(9):1138-47.
  2. Bai L, et al. Bioact Mater. 2024;31:525-48.
  3. Automated Cell Culture System. Molecular Devices. 2023.