Captivated by the Great Expanse of Neurons
According to Erin Schuman, science driven by fascination rather than tools will guide new discoveries.
Erin Schuman, a neurobiologist at the Max Planck Institute for Brain Research, studies how information is processed and stored in neurons. Schuman is the corecipient of the 2023 Brain Prize for her groundbreaking discoveries on local translation and synaptic plasticity.
What drew you to study cell biology in neuroscience?
What captivates me is how the neuron functions as an individual cell and how its morphology changes its biology. Most cells in the body are spherical, but neurons are unique. Around 80% of a neuron’s volume is in its extensive protrusions: axons and dendrites. The neuron has engineered a way for protein synthesis machinery to work beyond its cell body and into its expansive volume to preserve the functional integrity of its 10,000 synapses. That is something special.
What major challenges do neuroscientists face today?
Neuroscience is much too driven by the availability of tools and model systems. Instead of people saying, “what is a question I really want to ask?”, they ask, “what is the technique that I want to use?” They may do that consciously or subconsciously, but I find that science driven in that way is not as interesting and is less likely to lead to new discoveries. We need more original thinking that is not driven by the availability of tools.
What advice would you give to early career researchers?
Find a question that completely captivates you—one that you can muse about endlessly. Choose one that is not something that can be easily answered; explore a deep conceptual issue that you find very exciting personally because that will lead to excitement in your experiments. It will motivate you to stay in science and work on your project, even in the face of adversity. The things that captivate you are more likely to be where you are going to make an impact.
This interview has been condensed and edited for clarity.