Researchers Learn from Plant Viruses to Protect Crops

Plants are locked in an ancient arms race with hostile viruses, but genome editing is giving crops the upper hand.

Written byClaire Asher
| 15 min read

Register for free to listen to this article
Listen with Speechify
0:00
15:00
Share

MICROSCOPIC WAR: The leaves of this corn plant redden as a result of infection by maize chlorotic dwarf virus, which caused severe crop losses in the midwest and southern United States in the 1960s and ’70s.© BILL BARKSDALE/DESIGN PICS/GETTY IMAGES

In 2011, Noah Phiri was working with local farmers in Kenya to combat the fungal pathogen that causes coffee leaf rust when another virulent plant disease began wiping out maize in the country’s southwest corner. Infected plants developed pale streaks on their leaves, then wilted and died. Some farmers lost as much as 90 percent of their crop that year. Phiri, a plant pathologist at the U.K.-based Centre for Agriculture and Biosciences International (CABI), raced to identify the culprit. He and his colleagues collected samples of sick plants and sent them off to the plant clinic at the Food and Environment Research Agency (now Fera Science) in York, U.K. There, researchers sequenced RNA molecules expressed in the infected corn and identified two viruses that were ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

February 2018

Plant Science to the Rescue

Research on plant microbiomes and viruses could save our food supply

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform