Viral Discoveries, 1929

The “mother of plant virology and serology,” Helen Purdy Beale, developed techniques to understand the nature of viruses that went unappreciated for decades.

Written byMax Kozlov
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: SAY CHEESE: Helen Purdy Beale (front row, in the fur coat) poses for a photo in 1919 with her mycology class at Cornell University, where she began her graduate work in plant pathology.
W.R. FISHER, CORNELL UNIVERSITY

In 1925, after years of study and research, Helen Purdy Beale seemed to be on track to become the first woman to graduate with a doctorate from Cornell University’s plant pathology department. Her final hurdle was to obtain the approval of her adviser, Herbert Whetzel, who, unbeknownst to her, had dissuaded previous female graduate students from obtaining PhDs on the grounds that overqualified women could not get hired at agricultural experimental stations. True to form, Whetzel told Beale that her thesis could not be accepted and returned it, heavily marked up with red ink. Beale hurled the pages into his face, screaming, “You have shown the claws of the devil!” and stormed out, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Max is a science journalist from Boston. Though he studied cognitive neuroscience, he now prefers to write about brains rather than research them. Prior to writing for The Scientist as an editorial intern in late 2020 and early 2021, Max worked at the Museum of Science in Boston, where his favorite part of the job was dressing in a giant bee costume and teaching children about honeybees. He was also a AAAS Mass Media Fellow, where he worked as a science reporter for the St. Louis Post-Dispatch. Read more of his work at www.maxkozlov.com.

    View Full Profile

Published In

February 2021

Restoring Reefs

New approaches could accelerate development of outplanted corals

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies