Mapping recombination

In the October 10 Proceedings of the National Academy of Sciences Gerton et al. use arrays to map hotspots and coldspots of meiotic recombination across the whole yeast genome (Proc Natl Acad Sci USA 2000, 97:11383-11390). They isolate DNA from sporulating cells that are mutant in rad50S, and therefore blocked with the recombination protein Spo11p covalently bound to DNA. The DNA fragments that are covalently linked to proteins (with Spo11p presumably predominant) are trapped using a glass filte

Written byWilliam Wells
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

In the October 10 Proceedings of the National Academy of Sciences Gerton et al. use arrays to map hotspots and coldspots of meiotic recombination across the whole yeast genome (Proc Natl Acad Sci USA 2000, 97:11383-11390). They isolate DNA from sporulating cells that are mutant in rad50S, and therefore blocked with the recombination protein Spo11p covalently bound to DNA. The DNA fragments that are covalently linked to proteins (with Spo11p presumably predominant) are trapped using a glass filter, and used as probes in an array experiment to identify recombination sites. Hotspots are denser and more active on smaller chromosomes, and are often associated with peaks of high G + C content. Metabolic genes, which have high transcriptional activity, are over-represented. As in previous studies, coldspots are associated with telomeres and centromeres.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform