Scaling Up Cell Culture

Courtesy of New Brunswick Scientific  WAY BIGGER THAN A T-225: The CelliGen Plus bioreactor with packed-bed basket option. The packed-bed system is fully scaleable, from 500 mL to 150 L. Scientists routinely press eukaryotic cells into service as organic factories, cranking out everything from antibodies to viruses. How much biomass these researchers need to conduct their research, however, varies. Individual researchers can generally get what they need to coat the wells of an ELISA plat

| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

Scientists routinely press eukaryotic cells into service as organic factories, cranking out everything from antibodies to viruses. How much biomass these researchers need to conduct their research, however, varies. Individual researchers can generally get what they need to coat the wells of an ELISA plate, for instance, from a few large flasks' worth of cells. But larger-scale, production efforts require considerably more cells. Because cell culture is so labor-intensive, simply scaling up the number of growth chambers is not really a viable option for these investigators; instead they must look to entirely different cell growth options.

The term "large-scale bioreactor" brings to mind visions of enormous bomb-like stainless steel structures, affixed with valves and tubes and industrial-scale controls. Such tanks have been used for cell culture for nearly 50 years, notes chemical engineer Daniella Kranjac, director of sales and marketing for Wave Biotech of Bridgewater, NJ. But these days, biotechnologists ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Josh Roberts

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours