Video: Robocilia at work

Man-made cilia have shown that the real structures create complex flows of fluid that may contribute to normal development and tissue differentiation in early embryos, according to researchers at the University of North Carolina at Chapel Hill, reporting their linkurl:findings;http://www.pnas.org/cgi/doi/10.1073/pnas.1005127107 in __PNAS__. The artificial cilia in action mimicking the beat of nodal cilia in the embryoCourtesy of Adam Shields, UNC PhD student linkurl:Richard Superfine,;http://w

Written byBob Grant
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share
Man-made cilia have shown that the real structures create complex flows of fluid that may contribute to normal development and tissue differentiation in early embryos, according to researchers at the University of North Carolina at Chapel Hill, reporting their linkurl:findings;http://www.pnas.org/cgi/doi/10.1073/pnas.1005127107 in __PNAS__.
The artificial cilia in action mimicking the beat of nodal cilia in the embryo
Courtesy of Adam Shields, UNC PhD student
linkurl:Richard Superfine,;http://www.cs.unc.edu/People/Faculty/Bios/superfine.html a biophysicist at UNC, lead a team of researchers hoping to more completely explain how a ciliated area called the embryonic node aids in the formation of separate germ layers and in the development of a right-left axis in the embryo. "In order to understand these biological situations, we would have to make our own model and make precise measurements on what the fluid flows were like," Superfine told __The Scientist__. Superfine added that his group has so far created the model -- made from magnetic nanoparticles mixed with a substance similar to window caulking -- that best mimics the size and spacing of real cilia in developing embryos. In this model, fluids flow as if carried along by a river's sweeping current above the tips of cilia, but beneath the cilia's tips, fluids are mix, almost as if by simple diffusion. This new information, Superfine said, can help biologists understand how signaling molecules released at the embryonic node are transported in the embryo, given that molecules will follow a different path depending on where they are released. "In the end it gives real insight into how chemicals are released into this region of the nodal plate and then how they are sensed," he said. The establishment of chemical gradients, he added, which are crucial to the progression of normal development and differentiation, might not be possible without the rhythmic pulse of the cilia. "It's very nice work," said linkurl:Julian Vincent,;http://www.materialbeliefs.com/collaboration/julian-v.php a professor of mechanical engineering and the chair of biomimetics at the University of Bath in the UK, who was not involved with the research. "Here we have yet another mechanism which is used to generate shape in animals."
Directional transport of particles above the cilia tips
Courtesy of Adam Shields, UNC PhD student
"Mixing" flows below the cilia tips
Courtesy of Adam Shields, UNC PhD student
**__Related stories:__***linkurl:Eyelashes Up Close;http://www.the-scientist.com/article/display/57525/
[July 2010]*linkurl:Airway cilia taste toxins;http://www.the-scientist.com/blog/display/55836/
[23rd July 2009]*linkurl:Chasing the Cilium;http://www.the-scientist.com/article/display/14976/
[11th October 2004]
Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • From 2017 to 2022, Bob Grant was Editor in Chief of The Scientist, where he started in 2007 as a Staff Writer. Before joining the team, he worked as a reporter at Audubon and earned a master’s degree in science journalism from New York University. In his previous life, he pursued a career in science, getting a bachelor’s degree in wildlife biology from Montana State University and a master’s degree in marine biology from the College of Charleston in South Carolina. Bob edited Reading Frames and other sections of the magazine.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas