What Drives the "Wet Dog Shakes" Reflex in Furry Animals?

Scientists identified the mechanoreceptor that triggers the distinctive shake-off behavior observed in mice when they become wet.

Written byHannah Thomasy, PhD
| 3 min read
A golden retriever shakes off water on a sunny lawn.
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

From the largest tigers to the tiniest mice, most furry creatures share the common problem of how to dry off without a bath towel. Many have developed a similar strategy: a vigorous, full-body shaking motion that researchers have dubbed “wet dog shakes.” While somewhat silly-looking, this behavior may be important for survival, helping the animal dry off quickly so that it can conserve body heat and precious calories.1

Now, a research team led by Harvard University neurobiologist David Ginty has identified the somatosensory machinery that mediates this behavior. In a study published today (November 7) in Science, Ginty and his team found that a type of mechanoreceptor called a C fiber low-threshold mechanoreceptor (C-LTMR) helps trigger this behavior in response to various stimuli.2 The findings reveal a novel function for C-LTMRs, which are associated with affective touch and pain modulation in both mice and humans.3,4

The researchers found that many kinds of stimuli evoked wet dog shakes in mice: They performed the behavior when they were wet, but also in response to minor irritants—like an oil droplet or a puff of air—applied to the back of the neck. To confirm their suspicion that wet dog shakes were mediated by mechanosensation, as opposed to the sensation of mild cold that is also elicited by wetness or air puffs, researchers deleted the Piezo2 gene, which encodes an ion channel that is crucial for sensing touch. As they predicted, lack of Piezo2 essentially eliminated the shaking behavior in response to water or oil droplets.

Mice—and humans—have various types of mechanosensory neurons that each respond to different kinds of touch. Researchers measured how these neuronal populations responded to the application of an oil droplet and found that three types of low-threshold mechanoreceptors were most responsive. Of these, only the C-LTMRs consistently elicited wet dog shakes when optogenetically stimulated. Conversely, when researchers ablated most of the C-LTMRs, oil droplet-induced shaking behavior was substantially reduced, while the mice otherwise maintained normal locomotor behavior.

Continue reading below...

Like this story? Sign up for FREE Newsletter updates:

Latest science news storiesTopic-tailored resources and eventsCustomized newsletter content
Subscribe

Finally, researchers traced the pathway that conducted these sensory signals from the skin to the brain. Previous anatomical studies demonstrated that C-LTMRs gather touch information from the skin and transmit it to the other end of the cell, which is located in the dorsal horn of the spinal cord (in a cross section of the spinal cord, there is a butterfly-shaped region of grey matter comprised largely of cell bodies; the dorsal horn is the butterfly’s upper wing). From there, the researchers traced the signal across the synapse to spinoparabrachial neurons, which carried the signal up the spinal cord to the parabrachial nucleus (PBN), a brainstem region responsible for relaying sensory information to the rest of the brain. When researchers suppressed the ability of the spinal cord neurons to communicate with the PBN, or when they silenced the PBN itself, shaking behavior was decreased, confirming the importance of the spinoparabrachial pathway in mediating wet dog shakes.

While humans have access to bath towels and therefore do not need to shake dry, people do possess similar types of mechanoreceptors. In humans, these C-mechanoreceptors are thought to encode pleasurable touch; they may help to modulate pain and likely play a role in the evaluation of social touch.5–7 Thus, understanding the functions of these mechanoreceptors may lead to new insights into both pleasure and pain.

  1. Dickerson AK, et al. Wet mammals shake at tuned frequencies to dry. J R Soc Interface. 2012;9(77):3208.
  2. Zhang D, et al. C-LTMRs evoke wet dog shakes via the spinoparabrachial pathway. Science. 2024;386(6722):686-692.
  3. Schirmer A, et al. What are C-tactile afferents and how do they relate to “affective touch”? Neurosci Biobehav Rev. 2023;151:105236.
  4. Larsson M, Nagi SS. Role of C-tactile fibers in pain modulation: Animal and human perspectives. Curr Opin Behav Sci. 2022;43:138-144.
  5. Löken LS, et al. Coding of pleasant touch by unmyelinated afferents in humans. Nat Neurosci. 2009;12(5):547-548.
  6. Habig K, et al. Low threshold unmyelinated mechanoafferents can modulate pain. BMC Neurol. 2017;17(1):184.
  7. Cascio CJ, et al. Social touch and human development. Dev Cog Neurosci. 2019;35:5-11.

Related Topics

Meet the Author

  • Hannah Thomasy, PhD headshot

    Hannah is an Assistant Editor at The Scientist. Her work has appeared in The New York Times, The Daily Beast, and Undark. She earned her PhD in neuroscience from the University of Washington where she studied traumatic brain injury and sleep. She completed the Dalla Lana Fellowship in Global Journalism in 2020. Outside of work, she enjoys running and aspires to be a participant on The Great Canadian Baking Show.

    View Full Profile
Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform