What Drives the "Wet Dog Shakes" Reflex in Furry Animals?

Scientists identified the mechanoreceptor that triggers the distinctive shake-off behavior observed in mice when they become wet.

Written byHannah Thomasy, PhD
| 3 min read
A golden retriever shakes off water on a sunny lawn.
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

From the largest tigers to the tiniest mice, most furry creatures share the common problem of how to dry off without a bath towel. Many have developed a similar strategy: a vigorous, full-body shaking motion that researchers have dubbed “wet dog shakes.” While somewhat silly-looking, this behavior may be important for survival, helping the animal dry off quickly so that it can conserve body heat and precious calories.1

Now, a research team led by Harvard University neurobiologist David Ginty has identified the somatosensory machinery that mediates this behavior. In a study published today (November 7) in Science, Ginty and his team found that a type of mechanoreceptor called a C fiber low-threshold mechanoreceptor (C-LTMR) helps trigger this behavior in response to various stimuli.2 The findings reveal a novel function for C-LTMRs, which are associated with affective touch and pain modulation in both mice and humans.3,4

The researchers found that many kinds of stimuli evoked wet dog shakes in mice: They performed the behavior when they were wet, but also in response to minor irritants—like an oil droplet or a puff of air—applied to the back of the neck. To confirm their suspicion that wet dog shakes were mediated by mechanosensation, as opposed to the sensation of mild cold that is also elicited by wetness or air puffs, researchers deleted the Piezo2 gene, which encodes an ion channel that is crucial for sensing touch. As they predicted, lack of Piezo2 essentially eliminated the shaking behavior in response to water or oil droplets.

Mice—and humans—have various types of mechanosensory neurons that each respond to different kinds of touch. Researchers measured how these neuronal populations responded to the application of an oil droplet and found that three types of low-threshold mechanoreceptors were most responsive. Of these, only the C-LTMRs consistently elicited wet dog shakes when optogenetically stimulated. Conversely, when researchers ablated most of the C-LTMRs, oil droplet-induced shaking behavior was substantially reduced, while the mice otherwise maintained normal locomotor behavior.

Finally, researchers traced the pathway that conducted these sensory signals from the skin to the brain. Previous anatomical studies demonstrated that C-LTMRs gather touch information from the skin and transmit it to the other end of the cell, which is located in the dorsal horn of the spinal cord (in a cross section of the spinal cord, there is a butterfly-shaped region of grey matter comprised largely of cell bodies; the dorsal horn is the butterfly’s upper wing). From there, the researchers traced the signal across the synapse to spinoparabrachial neurons, which carried the signal up the spinal cord to the parabrachial nucleus (PBN), a brainstem region responsible for relaying sensory information to the rest of the brain. When researchers suppressed the ability of the spinal cord neurons to communicate with the PBN, or when they silenced the PBN itself, shaking behavior was decreased, confirming the importance of the spinoparabrachial pathway in mediating wet dog shakes.

While humans have access to bath towels and therefore do not need to shake dry, people do possess similar types of mechanoreceptors. In humans, these C-mechanoreceptors are thought to encode pleasurable touch; they may help to modulate pain and likely play a role in the evaluation of social touch.5–7 Thus, understanding the functions of these mechanoreceptors may lead to new insights into both pleasure and pain.

  1. Dickerson AK, et al. Wet mammals shake at tuned frequencies to dry. J R Soc Interface. 2012;9(77):3208.
  2. Zhang D, et al. C-LTMRs evoke wet dog shakes via the spinoparabrachial pathway. Science. 2024;386(6722):686-692.
  3. Schirmer A, et al. What are C-tactile afferents and how do they relate to “affective touch”? Neurosci Biobehav Rev. 2023;151:105236.
  4. Larsson M, Nagi SS. Role of C-tactile fibers in pain modulation: Animal and human perspectives. Curr Opin Behav Sci. 2022;43:138-144.
  5. Löken LS, et al. Coding of pleasant touch by unmyelinated afferents in humans. Nat Neurosci. 2009;12(5):547-548.
  6. Habig K, et al. Low threshold unmyelinated mechanoafferents can modulate pain. BMC Neurol. 2017;17(1):184.
  7. Cascio CJ, et al. Social touch and human development. Dev Cog Neurosci. 2019;35:5-11.

Related Topics

Meet the Author

  • Hannah Thomasy, PhD headshot

    Hannah is an Assistant Editor at The Scientist. Her work has appeared in The New York Times, The Daily Beast, and Undark. She earned her PhD in neuroscience from the University of Washington where she studied traumatic brain injury and sleep. She completed the Dalla Lana Fellowship in Global Journalism in 2020. Outside of work, she enjoys running and aspires to be a participant on The Great Canadian Baking Show.

    View Full Profile
Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research