3-D X-Rays Catch Insects in Flight

Using a new approach, researchers capture the in vivo mechanics of a flying fly.

kerry grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WIKIMEDIA, MAKRO FREAKScientists have developed a technique to see inside the muscles of a blowfly in flight. The flies were tethered, but moving their wings, as X-ray microtomatography captured the internal mechanics of how their steering muscles operate. “This by itself is a grand achievement at a wingbeat frequency of 145 Hz,” wrote Anders Hedenström of Lund University in Sweden, in a commentary in PLOS Biology.

Videos of the flies, published in PLOS Biology this week (March 25), offer an unprecedented look at the inner workings of the flight muscles as a tethered fly is spun in a circle. “This has been an awe-inspiring project on so many levels, not least the exquisite complexity of the insects themselves, but seeing the 3-D movies render for the first time was one of those breakthrough moments that as a scientist I’ll never forget,” Graham Taylor of Oxford University, who led the work, told PLOS Biologue.

Hedenström pointed out that, while the study represents a “methodological breakthrough,” a tethered fly is not the same as a freely moving fly, which could roll, speed up, and stop. Also, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • kerry grens

    Kerry Grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio