A Cell-Cycle Couple Loses Its Luster

Courtesy of Philipp Kaldis, © 2003 Elsevier  THE UNEXPECTED SURVIVOR: Mice that lack the CDK2 protein (-/-) survive to adulthood but are slightly smaller than their wild-type littermates (+/+). The knockouts are also sterile. After several groups reported discovering cyclin E and cyclin-dependent kinase 2 (CDK2) in 1991, a consensus emerged. It held that these protein partners are crucial in promoting the cell cycle's G1- to S-phase transition and driving cancer-cell proliferation.

Written byDouglas Steinberg
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

After several groups reported discovering cyclin E and cyclin-dependent kinase 2 (CDK2) in 1991, a consensus emerged. It held that these protein partners are crucial in promoting the cell cycle's G1- to S-phase transition and driving cancer-cell proliferation. Therapeutically minded investigators accordingly began to seek inhibitors that would target CDK2's ATP-binding pocket and catalytic site.

But five recently published papers demolish this consensus view. Two researchers knocked down CDK2 protein expression in cancer cell lines, and the cells continued to divide.1 Four teams of scientists knocked out the CDK2 or cyclin E genes (CCNE1 and CCNE2), and the mice were viable, or their cells proliferated in culture.2-5 Many of the rodents, however, were sterile.

When Mariano Barbacid, director of the Spanish National Cancer Center in Madrid, heard that his newly generated CDK2-null mice were running around in the animal facility, "My first thought was, we've done something wrong," he says. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH