A Cell-Cycle Couple Loses Its Luster

Courtesy of Philipp Kaldis, © 2003 Elsevier  THE UNEXPECTED SURVIVOR: Mice that lack the CDK2 protein (-/-) survive to adulthood but are slightly smaller than their wild-type littermates (+/+). The knockouts are also sterile. After several groups reported discovering cyclin E and cyclin-dependent kinase 2 (CDK2) in 1991, a consensus emerged. It held that these protein partners are crucial in promoting the cell cycle's G1- to S-phase transition and driving cancer-cell proliferation.

Written byDouglas Steinberg
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

After several groups reported discovering cyclin E and cyclin-dependent kinase 2 (CDK2) in 1991, a consensus emerged. It held that these protein partners are crucial in promoting the cell cycle's G1- to S-phase transition and driving cancer-cell proliferation. Therapeutically minded investigators accordingly began to seek inhibitors that would target CDK2's ATP-binding pocket and catalytic site.

But five recently published papers demolish this consensus view. Two researchers knocked down CDK2 protein expression in cancer cell lines, and the cells continued to divide.1 Four teams of scientists knocked out the CDK2 or cyclin E genes (CCNE1 and CCNE2), and the mice were viable, or their cells proliferated in culture.2-5 Many of the rodents, however, were sterile.

When Mariano Barbacid, director of the Spanish National Cancer Center in Madrid, heard that his newly generated CDK2-null mice were running around in the animal facility, "My first thought was, we've done something wrong," he says. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery