M. Shogren-Knaak et al., "Histone H4-K16 acetylation controls chromatin structure and protein interactions." Science, 311:844-7, 2006. (Cited in 132 papers)
Craig Peterson's group at the University of Massachusetts Medical School set out to find which histone modification was responsible for unfolding chromatin fibers for access to DNA. The researchers tested various synthesized versions of histone H4 to determine which of them compacted the least when exposed to magnesium salt, which triggers compaction. They found that a single acetylation, at residue K16 of the H4 tail, was sufficient to unfold the chromatin.
Previous crystal structure work implicated the H4 tail in chromatin remodeling, so researchers thought it would take more than a single acetylation event to unfold H4. "People thought that other [amino acids] were also modified," says Silke Sperling, a molecular biologist at the Max Planck Institute for Molecular Genetics in Berlin.
Since this study, other modifications have been found ...