A mossy renaissance

By Katherine Bagley A mossy renaissance Protonema cells of Physcomitrella patens The world’s top moss researchers—all eight of them—were gathered in a college lecture hall in Freiburg, Germany when they found out they had been granted funding to sequence a common moss (Physcomitrella patens) genome. It was September 2004, just a year after the group had made a joint decision to increase the moss field’s visibility. The moss field

Written byKatherine Bagley
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

The world’s top moss researchers—all eight of them—were gathered in a college lecture hall in Freiburg, Germany when they found out they had been granted funding to sequence a common moss (Physcomitrella patens) genome. It was September 2004, just a year after the group had made a joint decision to increase the moss field’s visibility. The moss field wasn’t getting enough respect, the researchers believed, and they wanted to do something about it.

“Our group had decided we needed to accomplish two things to get our science into people’s living rooms: publish more high-profile papers and create concrete applications for our research,” says Ralph Quatrano, a plant biologist at Washington University in St. Louis. “To us, sequencing the genome was the best way to accomplish those goals.”

The coalition’s strategy to sequence and disseminate the genome, set up that day in a University of Freiburg lecture hall, has thrust the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH