A new path for HIV entry

A new study overthrows a long-held theory on how HIV finds its way into host cells. Rather than fusing directly with the host cell membrane, the virus is first engulfed by it to form a vesicle that releases its contents into the cytoplasm, a study published tomorrow (May 1) in __Cell__ reports. linkurl:The findings;http://www.cell.com/abstract/S0092-8674(09)00268-2 may suggest other therapeutic avenues for targeting HIV, the researchers say. A single virus (yellow) co-labeled with amembrane (r

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share
A new study overthrows a long-held theory on how HIV finds its way into host cells. Rather than fusing directly with the host cell membrane, the virus is first engulfed by it to form a vesicle that releases its contents into the cytoplasm, a study published tomorrow (May 1) in __Cell__ reports. linkurl:The findings;http://www.cell.com/abstract/S0092-8674(09)00268-2 may suggest other therapeutic avenues for targeting HIV, the researchers say.
A single virus (yellow) co-labeled with a
membrane (red) and content (green) markers
migrates toward the cell nucleus and releases
its contents into the cytosol by fusing with
the endosomal membrane.

Image: Gregory Melikyan & Yuri Kim
Drawing: Norair Melikyan Images
"This is such an extensive and thorough paper that I think people are going to accept this as the dominant mode of viral entry" for HIV, said linkurl:Robert Blumenthal,;http://ccr.cancer.gov/Staff/staff.asp?profileid=5748 head of the Membrane Structure and Function Section at the National Cancer Institute in Frederick, Md., who did not participate in the research. Enveloped viruses such as HIV can enter their host cells in one of two ways. Some invade the cell by fusing their membrane envelopes with the cell's membrane. Others are engulfed by the plasma membrane into vesicles that break off inside the cell in a process called endocytosis. The virus-containing vesicles then fuse with other vesicles which contain a highly acidic environment; the lower pH changes the shape of viral proteins in such a way that the virus releases its genetic contents into the cytoplasm. Because HIV does not require a low pH for fusion and uses its envelope protein to bind directly to receptors on the host cell's surface, CD4 and its co-receptors CCR5 and CXCR4, researchers have long assumed that the fusion occurred at the surface. But linkurl:Gregory Melikyan;http://www.ihv.org/about/bios/melikian.html from the Institute of Human Virology at the University of Maryland School of Medicine, the lead author of the current study, had his doubts. "When you start thinking about it, you realize that there's no direct evidence" for fusion at the cell membrane, said Melikyan. The interaction between receptors and membrane, as well as the fact that the process doesn't need an acidic environment, don't rule out the possibility that these particles require endocytosis, he explained. To test this possibility, Melikyan and colleagues examined HIV fusion in the presence of two types of fusion inhibitors -- one that acts exclusively at the cell membrane and another that stops all fusion -- both in the endosomes and at the cell surface. If HIV indeed fused at the cell membrane, then Melikyan expected both inhibitors to have identical effects at every time point tested. Instead, researchers observed a lag in viral fusion, suggesting an extra step in which the virus particles were being endocytosed. To fine-tune the picture of the process, the researchers used two fluorescent stains to label two parts of the viral particle: the envelope membrane and the contents of the virus. They then followed individual virus particles as they fused with endosomes, observing that the viral contents were not released until they were inside the endocytic compartment. The study is "going to open up the whole question of entry once more," said linkurl:Mark Marsh;http://www.ucl.ac.uk/lmcb/research-groups/marsh.htm the director of the medical research council at the University College London, who was not involved in the work. However, he said, "I wouldn't say this closes the issue," because it needs to be independently confirmed. The results aren't likely to affect current therapeutic approaches that target HIV entry proteins, said Blumenthal. Those agents typically target earlier steps in the process, either inhibiting the virus before it attaches to the cell membrane or after it attaches but before it completes the release of its genome. But it may lead researchers to target the host's endocytic pathway in developing new drugs to treat HIV. He cautioned, though, that these approaches may have serious side effects. "The problem of targeting the host proteins is what it does to the host." Melikyan said that other viruses believed to fuse at the cell membrane might also fuse via the endocytic pathway. While that idea has yet to be tested, "now we have the tools" to address it, he said. Just the same, Melikyan suspects that his research may ruffle a few feathers. "I expect more hate mail than congratulations," he said.
**__Related stories:__***linkurl:5 HIV Treatment Strategies;http://www.the-scientist.com/article/display/53516/
[Sep 2007]*linkurl:New hope for HIV microbicide;http://www.the-scientist.com/blog/display/55487/
[4th March 2009]*linkurl:New wrinkle for HIV vaccine;http://www.the-scientist.com/blog/display/55478/
[25th February 2009]
Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Edyta Zielinska

    This person does not yet have a bio.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome