A Root Cause of Parkinson’s

Misfolded α-synuclein proteins promote the spread of Parkinson’s pathology in mouse brains.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Alpha-synuclein aggregates (red) in the mouse brain.Kelvin LukAggregates of misfolded α-synuclein proteins are not just hallmarks of Parkinson’s disease, they actually initiate pathology, according to a report out today (November 15) in Science. A single injection of the aggregated proteins, known as Lewy bodies, into the brains of healthy mice caused the propagation of such aggregates across networks of brain cells as well as the destruction of dopaminergic neurons, a key feature of Parkinson’s disease.

“There had been this [question] with the Lewy bodies as to whether they were sort of tomb-stone evidence of the disease occurring, or were more involved in the process,” said Gary Miller, a professor of neurology at Emory University in Atlanta, Georgia, who was not involved in the study. “What this shows is that they are clearly part of the process.”

Parkinson’s disease is one of a number of neurodegenerative conditions, including Alzheimer’s and prion diseases, that are characterized by the accumulation of protein aggregates in the brain, Miller explained. In prion diseases, misfolded proteins recruit and misfold more of the same protein, which in turn recruit and misfold additional proteins, and so on. “People suspected something similar might be occurring with α-synuclein in Parkinson’s,” ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems