A Talk on the Motor Side

1. What is a molecular motor?Tom Sephton, http://www.funhousefilms.comIt's any protein that uses chemical energy, specifically ATP hydrolysis, to produce physical force.2. How many types of motors are there?Proteins that transport molecules and vesicles along the cytoskeleton; enzymes involved in DNA strand separation and replication, such as helicases, gyrases, and topoisomerases; and ATPases that move ions and large organic molecules across membrances are all motor proteins. Their genes have t

Written byMaria Anderson
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Tom Sephton, http://www.funhousefilms.com

It's any protein that uses chemical energy, specifically ATP hydrolysis, to produce physical force.

Proteins that transport molecules and vesicles along the cytoskeleton; enzymes involved in DNA strand separation and replication, such as helicases, gyrases, and topoisomerases; and ATPases that move ions and large organic molecules across membrances are all motor proteins. Their genes have the same sequences to encode their ATP-hydrolyzing motor domains.

There are three superfamilies, comprising myosins, which travel along actin filaments, and kinesins and dyneins, which travel along microtubules. ATP hydrolysis causes a conformational change in these proteins' globular motor domains, allowing them to "walk" along their associated filaments (see Feature, p. 19). These superfamilies contain dozens of individual proteins, and new ones are still being characterized.1

Every cell has its own inventory of motors. In muscle cells, thick filaments of myosin pull on thin actin filaments, causing contractions. In neurons, kinesins use ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies