Actin moves chromosomes

Surprise findings from starfish oocytes address key questions about cell division

Written byMarta Paterlini
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

An actin network can move chromosomes during cell division, scientists report in this week's Nature. Their surprise findings are the first indication that the protein filaments play a role in chromosome movement, introducing a novel mechanism that seems necessary for delivering distal chromosomes to within the capture distance of centrosomal microtubules.

"The mechanism described [by the group] is so unexpected and beautiful. I never saw even a hint of something like that," said Alex Mogilner, from University of California, Davis, who was not involved in the research. He told The Scientist that the results address central questions in cell division—how the mitotic spindle is assembled from microtubules and other proteins, and how astral microtubules connect to chromosomes. "This has great importance for the field," Mogilner said.

Jan Ellenberg and colleagues at the European Molecular Biology Laboratory in Heidelberg followed meiosis in starfish (Asterina miniata) oocytes, and showed for the first ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH