With the ever-increasing density of microarrays comes a need for moresensitive and high-throughput ways to read the resulting data. Arrays contain tens of thousands of 50- to 150-μm-diameter spots per square centimeter, and the vast amount of information they produce has pushed imaging and scanning equipment to its limits.
Several recent advances promise to improve the sensitivity, speed, and accuracy of microarray readers. Scanners are becoming more versatile, able to read a broader range of chips, substrates, and detection molecules, and they are evolving to meet the demands of increasingly high-throughput technologies.
Resolution and sensitivity are the defining characteristics of microarray readers. In general, resolutions of 5–10 μm are needed to detect transcripts with a relative abundance of one copy in 500,000, or three to 10 copies per cell. And the presence of at least 2–5 molecules/μm2 is necessary for low-level fluorescence detection.
"The current trend in microarray scanners seems ...













