An Automated DNA Sequencer

The genomics revolution that reached its climax in 2000 owes its very existence to two men. The first is Frederick Sanger who in 1977 developed the method for DNA sequencing that now bears his name. The second is Leroy Hood, who (with colleagues Michael Hunkapiller and Lloyd Smith) in 1986 took Sanger's method and made it better.Sanger's enzymatic approach relies on specially modified reagents (2',3'-dideoxynucleotide triphosphates) whose incorporation into a growing DNA strand terminates the ex

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

The genomics revolution that reached its climax in 2000 owes its very existence to two men. The first is Frederick Sanger who in 1977 developed the method for DNA sequencing that now bears his name. The second is Leroy Hood, who (with colleagues Michael Hunkapiller and Lloyd Smith) in 1986 took Sanger's method and made it better.

Sanger's enzymatic approach relies on specially modified reagents (2',3'-dideoxynucleotide triphosphates) whose incorporation into a growing DNA strand terminates the extension reaction (see related story, p. 44). The method calls for extending a primer-template pair in the presence of a radioactive marker and, in four parallel reactions, either dideoxy-A, dideoxy-C, dideoxy-G, or dideoxy-T. The resulting products can then be resolved on a high-resolution polyacry-lamide gel to produce a four-lane-wide "ladder" that reveals the template's sequence. Brilliantly inventive, the technique is also painfully laborious, producing a few hundred or perhaps a thousand bases at a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Jeffrey Perkel

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours