An Automated DNA Sequencer

The genomics revolution that reached its climax in 2000 owes its very existence to two men. The first is Frederick Sanger who in 1977 developed the method for DNA sequencing that now bears his name. The second is Leroy Hood, who (with colleagues Michael Hunkapiller and Lloyd Smith) in 1986 took Sanger's method and made it better.Sanger's enzymatic approach relies on specially modified reagents (2',3'-dideoxynucleotide triphosphates) whose incorporation into a growing DNA strand terminates the ex

Written byJeffrey Perkel
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

The genomics revolution that reached its climax in 2000 owes its very existence to two men. The first is Frederick Sanger who in 1977 developed the method for DNA sequencing that now bears his name. The second is Leroy Hood, who (with colleagues Michael Hunkapiller and Lloyd Smith) in 1986 took Sanger's method and made it better.

Sanger's enzymatic approach relies on specially modified reagents (2',3'-dideoxynucleotide triphosphates) whose incorporation into a growing DNA strand terminates the extension reaction (see related story, p. 44). The method calls for extending a primer-template pair in the presence of a radioactive marker and, in four parallel reactions, either dideoxy-A, dideoxy-C, dideoxy-G, or dideoxy-T. The resulting products can then be resolved on a high-resolution polyacry-lamide gel to produce a four-lane-wide "ladder" that reveals the template's sequence. Brilliantly inventive, the technique is also painfully laborious, producing a few hundred or perhaps a thousand bases at a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform