An Epic Search

Can drugs based on epigenetics spark a new era in cancer treatment?

Written byAlla Katsnelson
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

As the story goes, the Cambridge-based epigenetic therapeutics company Epizyme was born on a summer California day in 2007, during an annual scientific retreat held by MPM Capital, a life science venture fund.

Each year, the bicoastal investment company hand picks a group of academic scientists to present their work around a chosen theme. That year’s theme was “new modalities for cancer,” and one of the speakers was Yi Zhang, a biochemist and biophysicist at the University of North Carolina at Chapel Hill. He was studying a number of enzymes that modify histones—the protein spools around which DNA winds—and the dysregulation of these enzymes in cancer.

Building a Better Mouse

Three New Paradigms

A New Smoking Gun?

Zhang told the room that it was the start of a new era in drug discovery, and that epigenetic therapies—which target not genes themselves, but enzymes regulating how and when those genes are ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH