Anthrax acts in surprising ways

In order for the anthrax toxin to enter a cell, its receptor-binding subunit must heptamerize, thus allowing the two enzymatic subunits to join prior to endocytosis. Laurence Abrami and colleagues at the University of Geneva and the National Institute of Allergy and Infectious Diseases recently revealed that endocytosis is regulated by counteracting posttranslational modifications in the receptor itself. Palmitoylation of the receptor's cytoplasmic tail facilitates endocytosis of the tox

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

In order for the anthrax toxin to enter a cell, its receptor-binding subunit must heptamerize, thus allowing the two enzymatic subunits to join prior to endocytosis. Laurence Abrami and colleagues at the University of Geneva and the National Institute of Allergy and Infectious Diseases recently revealed that endocytosis is regulated by counteracting posttranslational modifications in the receptor itself. Palmitoylation of the receptor's cytoplasmic tail facilitates endocytosis of the toxin and receptor by preventing the receptor from being prematurely incorporated into lipid rafts, ubiquitinated, and degraded.1

"This is the first time that the relationship between palmitoylation, recruitment to lipid raft, and ubiquitination has been clarified," says Faculty of 1000 reviewer Giampietro Schiavo, a cell biologist at the London Research Institute. "The authors find that palmitoylation prevents the receptors' entry into lipid rafts. This mechanism was totally unexpected. The general view was exactly the opposite: That palmitoylation would mediate targeting to lipid ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH