Antibodies Go Recombinant

Tips and resources for choosing the right antibody development program.

Written byAndrea Gawrylewski
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

The hybridoma methodology for developing monoclonal antibodies has been a lab staple for more than 30 years, and it still works great for immunohistochemistry and various cell biology techniques. During the past decade, however, recombinant technologies for antibody development, combinatorial libraries, and antibody engineering have gained a strong following, especially for high-end antibody applications, including therapeutic drug development.

While recombinant methods such as phage display require fancier footwork, if you?re working with an antigen that is highly toxic or nonimmunogenic, such as some self-tumor or virus antigens, recombinant techniques may be the way to go, according to Louis Weiner at Fox Chase Cancer Center in Philadelphia. ?For many years, scientists tried to get around problems by changing species, and devising novel hybridoma strategies to work something out,? he says. ?But with some highly conserved antigens this turns out to be very difficult with respect to monoclonal antibodies.?

Whether you?re looking ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research