Atomic Force Microscope, circa 1985

Gerd Binnig of the IBM Zurich Research Laboratory, Christoph Gerber of the University of Basel, and Calvin Quate of Stanford University puzzled over how they could accurately visualize biological material without destroying it.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

In July 1985, three physicists—Gerd Binnig of the IBM Zurich Research Laboratory, Christoph Gerber of the University of Basel, and Calvin Quate of Stanford University—puzzled over a problem while schmoozing at a microscopy workshop in the Austrian alps: How could they accurately visualize biological material without destroying it?

The scanning tunneling microscope, which Binnig had co-invented 4 years earlier, provided atomic resolution without the need for ultra-low temperatures. But it relied on an electric current flowing through conductive materials. Thus, viewing biological samples—especially living cells—was out of the question.

At the workshop, the trio fleshed out a new idea: Instead of measuring voltage fluctuations, they could simply look for fine-scale changes in miniscule van der Waals or electrostatic forces. Without the need for a current, such an "atomic force microscope" (AFM) could reveal the structure of nonconductive materials such as proteins, organelles, and whole cells.

Immediately thereafter, the three physicists ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Tia Ghose

    This person does not yet have a bio.

Published In

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide