Atomic Force Microscope, circa 1985

Gerd Binnig of the IBM Zurich Research Laboratory, Christoph Gerber of the University of Basel, and Calvin Quate of Stanford University puzzled over how they could accurately visualize biological material without destroying it.

Written byTia Ghose
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

In July 1985, three physicists—Gerd Binnig of the IBM Zurich Research Laboratory, Christoph Gerber of the University of Basel, and Calvin Quate of Stanford University—puzzled over a problem while schmoozing at a microscopy workshop in the Austrian alps: How could they accurately visualize biological material without destroying it?

The scanning tunneling microscope, which Binnig had co-invented 4 years earlier, provided atomic resolution without the need for ultra-low temperatures. But it relied on an electric current flowing through conductive materials. Thus, viewing biological samples—especially living cells—was out of the question.

At the workshop, the trio fleshed out a new idea: Instead of measuring voltage fluctuations, they could simply look for fine-scale changes in miniscule van der Waals or electrostatic forces. Without the need for a current, such an "atomic force microscope" (AFM) could reveal the structure of nonconductive materials such as proteins, organelles, and whole cells.

Immediately thereafter, the three physicists ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo