Biochemistry

T.A. Rooney, E.J. Sass, A.P. Thomas, "Agonist-induced cytosolic calcium oscillations originate from a specific locus in single hepatocytes," Journal of BiologicalChemistry, 265:10792-96, 1990. Andrew Thomas (Thomas Jefferson University, Philadelphia): "Recent improvements in digital imaging microscopy have resulted in revolutionary advances in our understanding of intracellular calcium homeostasis. These techniques have demonstrated that activation of receptors that act via the second messenger

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

T.A. Rooney, E.J. Sass, A.P. Thomas, "Agonist-induced cytosolic calcium oscillations originate from a specific locus in single hepatocytes," Journal of BiologicalChemistry, 265:10792-96, 1990.

Andrew Thomas (Thomas Jefferson University, Philadelphia): "Recent improvements in digital imaging microscopy have resulted in revolutionary advances in our understanding of intracellular calcium homeostasis. These techniques have demonstrated that activation of receptors that act via the second messenger inositol 1,4,5-trisphosphate can result in increases in intracellular calcium ([Ca2+]i), which are encoded in the form of [Ca2+]i oscillations in individual cells. In addition to the temporal organization provided by [Ca2+]i oscillations, we demonstrated a further level of organization of Ca2+ signaling in the spatial domain within individual primary cultured hepatocytes.

"Hormone-induced [Ca2+]i oscillations do not occur synchronously throughout the cell, but they originate as waves of Ca2+ from a specific region adjacent to the cell membrane and then they are self-propagated through the cell.

"Furthermore, the oscillatory [Ca2+]i ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH