Cancer genomes sequenced

Scientists have charted the most complete cancer genomes to date, according to two studies published in Nature this week, providing a catalog of some 90% of all the somatic mutations in melanoma and a type of lung cancer, as well as a starting point for identifying potentially causal mutations common to these types of cancer. Cross section of a human lung with cancerImage: Wikimedia commons"For the first time we have a really quite comprehensive view of two different common tumor types," said l

Written byJef Akst
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share
Scientists have charted the most complete cancer genomes to date, according to two studies published in Nature this week, providing a catalog of some 90% of all the somatic mutations in melanoma and a type of lung cancer, as well as a starting point for identifying potentially causal mutations common to these types of cancer.
Cross section of a human lung with cancer
Image: Wikimedia commons
"For the first time we have a really quite comprehensive view of two different common tumor types," said linkurl:Bert Vogelstein;http://www.hopkinsmedicine.org/pharmacology/research/vogelstein.html of Johns Hopkins Medicine, who was not involved in the research. "That information will form the foundation for subsequent studies." Previously, scientists studying cancer genomes had identified a handful of so-called driver mutations -- those that have a causative effect on the cancerous growth. But these two papers are the first to also analyze the noncoding regions of the genome, which may also contain driver mutations that could act by altering gene expression, Vogelstein said. Using shotgun sequencing techniques, linkurl:Michael Stratton;http://www.icr.ac.uk/research/research_profiles/2750.shtml of the Wellcome Trust Sanger Institute and the Institute of Cancer Research in the UK and his colleagues compiled a list of more than 50,000 somatic mutations in a small-cell lung cancer metastasis and a malignant melanoma cell line. Comparing them to known mutations in these cancer types, the researchers determined they had identified approximately 90% of all the mutations in the cancer cell lines, Stratton said. Finally, using traditional PCR techniques to search the genomes for newly identified mutations, the shotgun sequencing appeared to result in only about a 3% false positive rate. "That's a high quality catalog," Stratton said. From these catalogs, the researchers further identified the types of mutations that were most prominent in each cancer type and found them to be consistent with their known causes of ultraviolet light and tobacco carcinogens. The lung cancer genome, for example, was riddled with G to T substitutions, while the melanoma cell line carried predominately C to T mutations. linkurl:Gerd Pfeifer,;http://www.cityofhope.org/directory/people/pfeifer-gerd/Pages/default.aspx a molecular biologist at the City of Hope clinical research hospital in California, found the similarity among the mutation types within a particular cancer genome "quite surprising." While scientists had previously identified a handful of mutations found in these particular cancer types, "people thought that was maybe a unique situation," said Pfeifer, who was not involved in the research. "But it seems to be a much more general phenomenon that affects the entire genome." Thus, by knowing the complete genomes of a variety of cancer types, Pfeifer added, "we might understand [something] about the etiology of these cancers." For melanoma and lung cancer, scientists have a pretty good understanding of what causes the mutations, but for many other cancer types, such as breast or pancreatic cancer, the "mutational signatures" revealed by these types of sequencing studies may get scientists "closer to understanding the origin of the tumors," he said. "I think over the next year you can be absolutely confident there will be dozens if not hundreds of different tumors looked at," Vogelstein said. In addition to sequencing more different kinds of cancers, there will be a "profound benefit" of sequencing more cell lines from the same tumor type, said Stratton. By identifying mutations that show up consistently in hundreds of different tumors of the same type, he said, scientists will be able to pinpoint additional driver mutations of specific cancers. These genes may present new drug targets for cancer therapies. A complete list of the driver mutations in any particular cancer type can then serve as the ultimate diagnostic tool, Stratton added. Looking at a particular tumor in a particular patient and being able to identify which driver mutations it carries "will give us a good indication of which drugs the patient will respond to," he said, "[giving] us a much more refined way of applying cancer therapy to the benefit of patients." "This is a landmark moment in cancer research," Stratton said. "From this moment on, this is going to be our expectation for what we want to know about individual cancers -- it resets our ambitions for cancer."
**__Related stories:__***linkurl:Cancer research, stimulated;http://www.the-scientist.com/blog/display/55649/
[21st April 2009]*linkurl:More than 150 new cancer mutations found;http://www.the-scientist.com/news/home/52929/
[7th March 2007]*linkurl:Developing the Ideal Breast Cancer Screening Test;http://www.the-scientist.com/article/display/12492/
[9th July 2001]
Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research