Canvassing Protein Complexes

Two yeast studies begin to identify protein interactions on a genome-wide scale.

Written byDavid Secko
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

The drama of biology is played out through thousands of protein-protein interactions. Historically, researchers could only examine these interactions one by one, but genomic sequences and high throughput methods have opened up the "interactome" - the complete list of all protein interactions in an organism.

With a sequenced eukaryotic genome, lists of every protein, and genetic amenability, Saccharomyces cerevisiae was an obvious model with which to examine cell-wide protein interactions. In 2000, Peter Uetz and colleagues, then at the University of Washington, made the first attempt at systematically mapping protein-protein interactions in yeast, reporting 957 putative interactions from 1,004 yeast proteins.

A smattering of similar studies soon followed, but they shared a flaw: the use of expression vectors that overproduced tagged proteins. It became clear that future work needed to maintain endogenous protein levels, says Jack Greenblatt, from the University of Toronto.

In 2006, back-to-back Hot Papers did this using ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH