Carl Woese In Forefront Of Bacterial Evolution Revolution

For the better part of this century, microbiologists have largely ignored evolutionary relationships among bacteria. But a revolution has occurred in microbiology with the advent of nucleic sequencing: Today, new phylogenetic relationships can be determined in far more detail and depth than was ever thought possible. Carl R. Woese, 62, of the department of microbiology at the University of Illinois in Urbana, is widely considered the leader of this revolution. His 1987 review, "Bacterial evolu

Written byLisa Holland
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

For the better part of this century, microbiologists have largely ignored evolutionary relationships among bacteria. But a revolution has occurred in microbiology with the advent of nucleic sequencing: Today, new phylogenetic relationships can be determined in far more detail and depth than was ever thought possible.

Carl R. Woese, 62, of the department of microbiology at the University of Illinois in Urbana, is widely considered the leader of this revolution. His 1987 review, "Bacterial evolution," published in Microbiological Reviews (51:221-71, 1987), comprehensively summarizes work done over the previous 10 years on the new phylogenetic categorization in microbiology. With more than 300 citations already (as tabulated from the Institute for Scientific Information's Science Citation Index), this review stands as the most cited microbiology paper of those published in the last three years (see accompanying chart).

Woese's paper discusses past failed attempts at developing a bacterial phylogeny. Stymied by technical difficulties, early ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH