In your August 1, 2005 issue, Herbert Sauro writes: "Given the statistics on modern chip design, one wonders if, in fact, cellular complexity has been surpassed [by computer technology]. For example, with the recent move to 90-nm fabrication technology, the average transistor is now less than 50 nm in diameter – only 5 times bigger than the average intracellular protein."1 However, proteins are not just static structures of atoms; they also contain dynamic circuits that convey nuclear force and charge, with highly complex nuclear interactions that change not only the shape but also function of the protein. The "transistor" in a protein is often or always an atom.
For example, look at the reaction centers of the photosynthetic light harvesting proteins, which are just 10 nm across – a fifth the size of a single transistor. These proteins contain extensive energy control and switching circuits, in which each individual...