Cells and chips: it's no contest

In your August 1, 2005 issue, Herbert Sauro writes: "Given the statistics on modern chip design, one wonders if, in fact, cellular complexity has been surpassed [by computer technology]. For example, with the recent move to 90-nm fabrication technology, the average transistor is now less than 50 nm in diameter – only 5 times bigger than the average intracellular protein."1 However, proteins are not just static structures of atoms; they also contain dynamic circuits that convey nuclear forc

Written byRobin Christopher Colclough
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

In your August 1, 2005 issue, Herbert Sauro writes: "Given the statistics on modern chip design, one wonders if, in fact, cellular complexity has been surpassed [by computer technology]. For example, with the recent move to 90-nm fabrication technology, the average transistor is now less than 50 nm in diameter – only 5 times bigger than the average intracellular protein."1 However, proteins are not just static structures of atoms; they also contain dynamic circuits that convey nuclear force and charge, with highly complex nuclear interactions that change not only the shape but also function of the protein. The "transistor" in a protein is often or always an atom.

For example, look at the reaction centers of the photosynthetic light harvesting proteins, which are just 10 nm across – a fifth the size of a single transistor. These proteins contain extensive energy control and switching circuits, in which each individual atom ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research