Cells by Design

BIOFACTORIES:© 2003 Nature Publishing GroupAbove is a depiction of the genetic network engineered into Escherichia coli for production of amorphadiene via the DXP or mevalonate isoprenoid pathway. The black triangles represent the PLAC promoter. Genes isolated from Saccharomyces cerevisiae, E. coli, and Haematococcus pluvialis were used to construct the network. (From V.J.J. Martin et al., Nat Biotechnol, 21: 796–802, 2003.)Synthetic biology is a new discipline based on the expectatio

Written byPamela Silver
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

© 2003 Nature Publishing Group

Above is a depiction of the genetic network engineered into Escherichia coli for production of amorphadiene via the DXP or mevalonate isoprenoid pathway. The black triangles represent the PLAC promoter. Genes isolated from Saccharomyces cerevisiae, E. coli, and Haematococcus pluvialis were used to construct the network. (From V.J.J. Martin et al., Nat Biotechnol, 21: 796–802, 2003.)

Synthetic biology is a new discipline based on the expectation of a revolution. In the future, bioengineers will create new organisms based on the same strategies that engineers use to design computer chips, bridges, and skyscrapers. Mathematical modeling will drive the design of useful, artificial organisms, instead of relying on the blind, trial-and-error methods of natural selection.

Advocates say synthetic biology will develop because of the rapidly decreasing cost of DNA synthesis and sequencing. Commercial plasmid-synthesis companies currently construct large pieces of DNA for less than $3 per base, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform