Did bitter tasters do better?

Genetic clues suggest distinguishing bitter natural toxins was advantageous in human evolution

Written byIshani Ganguli
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

An improved ability to distinguish the bitter taste of natural toxins in foods may have made a difference in the survival of early humans as they radiated out of Africa, according to a genetic analysis by researchers led by a group at University College London, appearing in the July 26 issue of Current Biology. The new study suggests that a particular allele for the G protein-coupled taste receptor TAS2R16-which mediates the response to bitter cyanogenic glycosides found in many food plants-has been favored by human evolution.

"There is a general understanding that higher primates and humans in particular are losing some of their sensory capabilities because we have replaced sensory perception with other means of protecting ourselves-cooking food, for instance, or even changing diet," said coauthor Nicole Soranzo.

However, these results suggest that there is more to the evolutionary story, said John Glendinning, of Barnard College in New York, who ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD

Products

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies