DNA Expression Profiling: A New Lens on Cancer

Lumps, bumps, and unusual marks have long heralded cancer, from a bulging jaw in an australopithecine fossil, to traces of melanoma in a 2,400-year-old Incan mummy, to the frightening discovery of a dimpled breast today. Since the 1970s, a portrait of carcinogenesis has emerged from a series of genetic insults that pushed cells to proliferate, invade, and spread. Today, gene expression profiling is expanding that view to embrace a waxing and waning of protein levels that provide a dynamic bac

| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

Lumps, bumps, and unusual marks have long heralded cancer, from a bulging jaw in an australopithecine fossil, to traces of melanoma in a 2,400-year-old Incan mummy, to the frightening discovery of a dimpled breast today. Since the 1970s, a portrait of carcinogenesis has emerged from a series of genetic insults that pushed cells to proliferate, invade, and spread. Today, gene expression profiling is expanding that view to embrace a waxing and waning of protein levels that provide a dynamic backdrop to the choreography of cancer. And charting those changes may have predictive value.

"Microarray-based gene expression analyses are showing us that we probably do not have a firm understanding of the stages of carcinogenesis and metastasis. Individual cancers are likely to have metastatic potential very early in their natural history," says Jeffrey Boyd, director of the gynecological and breast research laboratory at Memorial Sloan-Kettering Cancer Center in New York. That ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Ricki Lewis

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide