DNA Sequencing Industry Sets its Sights on the Future

THE SANGER METHOD:Single-stranded DNA is mixed with a primer and split into four aliquots, each containing DNA polymerase, four deoxyribonucleotide triphos-phates and a replication terminator. Each reaction proceeds until a replication-terminating nucleotide is added. The mixtures are loaded into separate lanes of a gel and electrophoresis is used to for an illustration of a high-speed DNA sequencer.)What's happening in the DNA sequencing industry? After all, the human genome sequence is done an

Written byEdward Winnick
| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

Single-stranded DNA is mixed with a primer and split into four aliquots, each containing DNA polymerase, four deoxyribonucleotide triphos-phates and a replication terminator. Each reaction proceeds until a replication-terminating nucleotide is added. The mixtures are loaded into separate lanes of a gel and electrophoresis is used to for an illustration of a high-speed DNA sequencer.)

What's happening in the DNA sequencing industry? After all, the human genome sequence is done and dusted. Two big players in the industry have recently undergone major changes: Michael W. Hunkapillar, who developed the technology that made high-throughput sequencing possible, stepped down in August from his role as president of Applied Biosystems. And Amersham was purchased by General Electric this year and rebranded as GE Healthcare. Upstart companies are developing a new wave of technologies to challenge capillary technology, currently the only game in town. For the time being it is business as usual, but ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH