Double Duplication

Two whole genome duplications boosted the complexity of the ancestor of all vertebrates, but also introduced potential for disease.

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

More than 500 million years ago, the DNA of a primitive chordate sea creature underwent two successive doublings, allowing for the evolution of the complex internal communication between cells that led to the evolution of vertebrates.

Now, researchers have sequenced the genome of the amphioxus, a modern marine invertebrate that did not undergo the genome duplications and is believed to be similar to the original vertebrate ancestor. By comparing the amphioxus genome to the human genome, the study, published today (July 24) in Open Biology, provides insights into how the duplications boosted cells' ability to integrate information, but also reveals how breakdowns in cellular communication cause diseases like cancer, diabetes, and neurological disorders.

“Amazingly, what happened so long ago still affects the life and diseases of modern humans,” said co-author Carol MacKintosh, of the University of Dundee, in a press release. MacKintosh and colleagues are investigating the protein-coding gene duplicates ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Hayley Dunning

    This person does not yet have a bio.
Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

An illustration of different-shaped bacteria.

Leveraging PCR for Rapid Sterility Testing

Conceptual 3D image of DNA on a blue background.

Understanding the Nuts and Bolts of qPCR Assay Controls 

Bio-Rad