Down but Not Out

By Richard P. Grant Down but Not Out HIDDEN JEWEL Normal cells do not grow and divide forever. Even before they get old and die, many cells in the body are quiescent: temporarily out of the proliferative cell cycle, waiting for a signal to wake up and become active again. Cells grown in culture will also enter such a state, either because they’re too crowded or have run out of nutrients. Princeton University’s Hilary Coller recently found that s

Written byRichard P. Grant
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Normal cells do not grow and divide forever. Even before they get old and die, many cells in the body are quiescent: temporarily out of the proliferative cell cycle, waiting for a signal to wake up and become active again. Cells grown in culture will also enter such a state, either because they’re too crowded or have run out of nutrients. Princeton University’s Hilary Coller recently found that some of these cells are surprisingly metabolically active, even while not proliferating.

Previous work on lymphocytes, Coller says, suggested that quiescence is associated with a “sleepy metabolic state” during which cells take up less glucose and excrete fewer waste products, such as lactate. Whereas a proliferating cell has to replicate all of its contents in order to divide, quiescent cells don’t make new proteins, lipids or organelles, and aren’t replicating DNA.

Carpe Datum

From Kinase to Cancer

Lessons in Senescence

Coller says ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series