Downsizing DNA Assays

Detection of the DNA sequences responsible for genetically transmitted diseases can open doors to a potential cure, but the research can be expensive and tedious. Princeton, N.J. -based PharmaSeq's light-powered, reusable transponders could provide an inexpensive alternative for performing DNA assays. A nanotransponder measuring just 250 x 250 x 100 µm (less than 1/1000th the size of a grain of rice) is the newest DNA microchip in PharmaSeq's family of microtransponders. Competitive devic

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

A nanotransponder measuring just 250 x 250 x 100 µm (less than 1/1000th the size of a grain of rice) is the newest DNA microchip in PharmaSeq's family of microtransponders. Competitive devices are about the size of a Tylenol® capsule. The cube-shaped radio transmitter-receiver is the world's smallest externally powered monolithic integrated circuit capable of transmitting an identity code by radio frequency.

On board PharmaSeq's silicon chip device is an integrated circuit packed with photovoltaic cells, electronic memory, clock, logic, and antenna. Using a proprietary process, PharmaSeq attaches thousands of copies of an oligonucleotide probe to each transponder. Unlike current 2-D arrays, which index probes using Cartesian coordinates of the element on a large flat surface, Pharmaseq's novel 3-D transponders electronically store a serial number unique to each DNA sequence.

Different transponders carry different probes that highlight specific genetic diseases or mutations. According to Wlodek Mandecki, PharmaSeq president and CEO, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Kelli Miller

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours