Elucidating the DNA Damage Pathway

For this article, Jennifer Fisher Wilson interviewed Thanos Halazonetis, molecular biologist at the Wistar Institute in Philadelphia; Tak Mak, departments of medical biophysics and immunology at University of Toronto; and Carol Prives, department of biological sciences at Columbia University in New York City. Data from the Web of Science (ISI, Philadelphia) show that Hot Papers are cited 50 to 100 times more often than the average paper of the same type and age. N.H. Chehab et al., "Chk2/hCds1 f

Written byJennifer Fisher Wilson
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

During the 1990s, scientists identified the events downstream of p53 that lead to arrest or apoptosis. Little was known, however, about upstream signaling events that follow DNA damage leading to p53's activation and stabilization. This research led these authors to find the kinase that activates p53. Until this work, "we knew very little about the upstream p53 regulators, only that ATM [Ataxia telangiectasia-mutated] was involved," says Thanos Halazonetis, a molecular biologist at the Wistar Institute in Philadelphia and lead author of one of these papers.

Soon afterward, researcher Robert Abraham at Duke University Medical Center, Durham, NC, showed that another DNA damage sensor, ATR (ATM and Rad-3 related), also functions upstream of p53.4 But the findings suggested that some other kinase, activated by ATM and ATR, must stabilize p53 by phosphorylating on the gene's serine-20 (Ser-20) location.

Meanwhile, biochemist Steve Elledge, Baylor College of Medicine, Houston, cloned a kinase called ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH