Evolutionists Present Their 1.3% Solution

In 1975, Mary-Claire King and the late Allan Wilson, both then at the University of California, Berkeley, showed that the genetic distance between humans and chimpanzees is simply too small to account for the dramatic anatomical and behavioral differences between the two species.1 No matter what method scientists used to measure genetic distance--protein electrophoresis, DNA hybridization, immunology, or amino acid sequencing--the result was always the same: Humans and chimpanzees are 98.7% ge

Written byLeslie Pray
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

In 1975, Mary-Claire King and the late Allan Wilson, both then at the University of California, Berkeley, showed that the genetic distance between humans and chimpanzees is simply too small to account for the dramatic anatomical and behavioral differences between the two species.1 No matter what method scientists used to measure genetic distance--protein electrophoresis, DNA hybridization, immunology, or amino acid sequencing--the result was always the same: Humans and chimpanzees are 98.7% genetically similar.

"The molecular similarity between chimpanzees and humans is extraordinary because they differ far more than sibling species in anatomy and way of life," King and Wilson argued. "Is it possible, therefore, that species diversity results from molecular changes other than sequence differences in proteins?" In particular, they suggested that differences between humans and chimps are perhaps based, not on dissimilar gene sets, but rather on gene expression divergencies. The thought was, maybe the degree to which a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies