Alternative Splicing Provides a Broad Menu of Proteins for Cells

It’s now clear that gene transcripts can be constructed in various ways, yet many questions remain about the process.

Written byGabrielle M. Gentile, Hannah J. Wiedner, Emma R. Hinkle, and Jimena Giudice
| 16 min read
a pair of scissors cuts a film strip that's curled into a helix

Register for free to listen to this article
Listen with Speechify
0:00
16:00
Share

ABOVE: © THE SCIENTIST STAFF

Seventeen years ago, the completion of the Human Genome Project revealed that there are around 20,000 protein-coding genes in the human genome—a puzzling result, given our intricate biology. Thanks to the advancement of large-scale proteomic studies over the decade following that milestone, researchers realized that some human cells contain billions of different polypeptides. Researchers realized that each gene can encode an array of proteins. The process of alternative splicing, which had first been observed 26 years before the Human Genome Project was finished, allows a cell to generate different RNAs, and ultimately different proteins, from the same gene. Since its discovery, it has become clear that alternative splicing is common and that the phenomenon helps explain how limited numbers of genes can encode organisms of staggering complexity. While fewer than 40 percent of the genes in a fruit fly undergo alternative splicing, more than 90 ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

January/February 2020

A Light in the Dark

Unpacking the Complex Neurobiology of Suicide

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform