Is It Time to Rethink Parkinson’s Pathology?

New evidence points to a waste-clearing problem in patients’ cells, rather than the accumulation of protein tangles, as the root cause of the neurodegenerative disease.

Written byAshley Yeager
| 11 min read

Register for free to listen to this article
Listen with Speechify
0:00
11:00
Share

ABOVE: © Lisa ClARK

During her time as a postdoc at the University of Basel in Switzerland, Sarah Shahmoradian decided to study the abnormal aggregates of protein that develop inside nerve cells and contribute to Parkinson’s disease. The protein clumps develop over time in the brains of Parkinson’s patients, leading some scientists to think they wreak havoc on nerve cells, causing severe damage and hastening their death. A fresh look at the clumps, called Lewy bodies, with cutting-edge microscopy tools could reveal insights that might lead to new treatments for Parkinson’s, Shahmoradian recalls thinking. “The original goal was to really find out what the building blocks of Lewy bodies are, what they are made of, and what they actually look like.”

The clumps were first identified in the early 1900s, appearing as abnormal material in nerve cells viewed under a microscope. Additional studies using antibodies that bound to various proteins ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

    View Full Profile

Published In

October 2019

Brain Fog

Air Pollution May Cause Cognitive Decline

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies