Finding a Mate

Available Two-hybrid Systems Graphic: Leza BerardoneGenome sequencing has produced a vast supply of proteins in need of a functional identity. One way to identify a protein's function is to identify its interacting partners, because proteins often work in pairs or as part of large complexes. Scientists traditionally have used biophysical or biochemical methods (such as affinity chromatography or co-immunoprecipitation) to study protein-protein interactions. More recently, two-hybrid and phage-d

Written byBarbara Cunningham
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

The two-hybrid system is an in vivo assay, so proteins are more likely to be in their native conformation, and weak and/or transient interactions that may evade detection in vitro can be detected. Conventional two-hybrid systems are based on the fact that many eukaryotic transcriptional activators contain two physically and functionally separate domains, both of which are required for activity. The DNA-binding domain (DBD) binds to specific cis-regulatory sequences, whereas the activation domain (AD) recruits and instructs RNA polymerase II to transcribe downstream genes. While the DBD and AD are generally part of the same protein, as in the native yeast GAL4 protein, they may also function separately provided they are linked in some way that tethers the AD to the promoter.

The standard yeast two-hybrid system identifies an interaction between two proteins by reconstituting active GAL4 protein.1 The two proteins are expressed as fusions with the GAL4 DBD and ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series