Finding Heterogeneous Loci with Human-Mouse Cell Hybrids

Bert Vogelstein has an unusual complaint about the humans whose genetic defects he studies: "We're diploid."

Written byJosh Roberts
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Bert Vogelstein has an unusual complaint about the humans whose genetic defects he studies: "We're diploid." That can make it difficult to detect mutations in individuals who are heterozygous at particular loci, a situation that can occur with autosomal dominant traits and in carriers of recessive traits. To find these mutant genes, researchers typically amplify the gene and then sequence the resulting amplicons. Yet if a chunk of DNA is missing from the template, says Vogelstein, who studies the molecular genetics of human colorectal cancer at Johns Hopkins University, "then the only thing you amplify with PCR ... is the wild type or normal allele, so you never see the mutation."

Several years ago Vogelstein's lab developed a technique to "convert" diploid human cells into mouse/human hybrids bearing a single copy of a given human chromosome, from which haploid templates can be made.1 By performing "a bunch of neat little ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH