Fine-mapping of fearfulness

Geneticists cut their teeth on conditions controlled by single loci. The harder task is to find the many loci that work together to control a single trait. In the 7 November Proceedings of the National Academy of Sciences Mott et al. demonstrate a new method for mapping these quantitative trait loci (QTL; Proc Natl Acad Sci USA 2000, published online before print). Previous methods all have their limits: family-based studies tend to be small and so can only do coarse mapping; population-based as

Written byWilliam Wells
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Geneticists cut their teeth on conditions controlled by single loci. The harder task is to find the many loci that work together to control a single trait. In the 7 November Proceedings of the National Academy of Sciences Mott et al. demonstrate a new method for mapping these quantitative trait loci (QTL; Proc Natl Acad Sci USA 2000, published online before print). Previous methods all have their limits: family-based studies tend to be small and so can only do coarse mapping; population-based association studies give greater numbers (and thus potentially greater resolution) but are complicated by variable and unknown inheritance histories; and breeding studies in mice are plagued by a possible lack of segregating loci when two inbred mouse populations are used as founders. Mott et al. get around this last problem by using the progeny from an eight-way cross that was started 30 years ago and is now in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform