Fluorescence Spectroscopy Methods Reveal Biomolecules' Dynamics

Dynamics Author: Howard Goldner During the past few decades, fluorescence spectroscopy has developed into an integral technique in many scientific disciplines. In the life sciences, it is implemented extensively in areas such as biochemistry, biophysics, and cell biology for a variety of applications, ranging from basic assay-related quantitative measurements to DNA sequencing. Locates Molecules:Fluorolog-t2 Spectrometer More recently, advances in instrumentation, laser technology, and fluore

Written byHoward Goldner
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

Dynamics Author: Howard Goldner During the past few decades, fluorescence spectroscopy has developed into an integral technique in many scientific disciplines. In the life sciences, it is implemented extensively in areas such as biochemistry, biophysics, and cell biology for a variety of applications, ranging from basic assay-related quantitative measurements to DNA sequencing.


Locates Molecules:Fluorolog-t2 Spectrometer

More recently, advances in instrumentation, laser technology, and fluorescent dyes (or probes) are aiding researchers in their efforts to better understand the dynamics of complex biomaterials such as proteins, membranes, and nucleic acids. Fluorescence- microscopy methods, for example, are increasingly being used to study the localization and movement of intracellular substances (H. Ahern, The Scientist, April 17, 1995, page 18).

"Scientists like to use fluorescence spectroscopy for two reasons," explains William Mantulin, an adjunct associate professor of biochemistry and biophysics and the director of the Laboratory for Fluorescence Dynamics, a National Institutes of Health-sponsored research ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform