In 1961, Nobel laureate Peter Mitchell's provocative pairing of chemistry and biology gave birth to his chemiosmotic hypothesis and its corollary proton motive force, or what Mitchell liked to call proticity.1 Forty years later, the authors of these two selected Faculty of 1000 papers2,3 have provided structural and functional confirmation of Mitchell's theories.
In the first paper, So Iwata and his graduate student Mika Jormakka provide molecular proof of proton motive force and an energy conserving redox loop,2 another Mitchell proposal. In the second manuscript, Andreas Matouschek and colleague Shihai Huang3 describe mitochondrial chemiosmosis and proton motive force in action. "It's a very, very old story," says Iwata, "and most of it came from Mitchell's imagination."
Mitchell's theory, known as the chemiosmotic hypothesis, envisioned that positively charged hydrogen ions (protons) were transferred from one membrane side to the other, and that this process involved electron transfer reactions and adenosine triphosphate ...