Gene fusion identified in prostate cancer

Find is unusual in solid tumors, typically characterized solely by random genetic changes

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Using a novel bioinformatics approach, researchers found that the majority of prostate cancers carry a specific gene fusion, a common feature of blood cancers but relatively rare in solid tumors, according to this week'sScience. A team led by Arul Chinnaiyan found that in over 75% of prostate cancer samples, the regulatory region of the TMPRSS2 gene is fused to a gene encoding an ETS transcription factor, either ERG or ETV1, causing over-expression of the factor and, in turn, cancerous growth.

"There was a general consensus that the mechanism [of] translocation was not [found] in the major types of epithelial tumors," said Stephen Baylin at Johns Hopkins Medical School in Baltimore, Md., who did not participate in this study. "This is a big sort of hint that functional translocations are much more common in solid tumors. That's a fascinating step."

Chinnaiyan's lab at the University of Michigan Medical School had previously ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Ishani Ganguli

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio